Organocatalytic Asymmetric Mannich Reaction of 3-Hydroxyoxindoles/3-Aminooxindoles with in Situ Generated N -Boc-Protected Aldimines for the Synthesis of Vicinal OxindoleDiamines/Amino Alcohols

Jing Shan, Baodong Cui,* Yu Wang, Chengli Yang, Xiaojian Zhou, Wenyong Han, and Yongzheng Chen* School of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China

S Supporting Information

Abstract

A highly efficient asymmetric Mannich reaction of 3-monosubstituted 3-aminooxindoles/3-hydroxyoxindoles with in situ generated N-Boc-protected aldimines catalyzed by the chiral bifunctional thiourea-tertiary amine catalyst has been developed. Under mild reaction conditions, a series of structurally diverse vicinal oxindole-diamines/amino alcohols were smoothly obtained in moderate to high yields (up to 99%) with good to excellent diastereoselectivities and enantioselectivities (up to $95: 5 \mathrm{dr}$ and 96% ee). The synthetic application of this protocol was also demonstrated by the versatile transformation of chiral vicinal oxindole-diamine/ amino alcohol into spirocyclic oxindoles.

INTRODUCTION

Endeavors leading to the synthesis of structurally diverse organic molecules are of continuing interest to medicinal chemists because these efforts have the potential to generate new drug candidates. ${ }^{1}$ Optically active disubstituted 3 -aminooxindoles ${ }^{2} / 3$-hydroxyoxindoles ${ }^{3}$ are structural motifs that represent privileged pharmacophores found in biologically active natural products and synthetic compounds. In recent years, considerable efforts were invested in the development of creative strategies to access chiral disubstituted 3-aminooxindoles ${ }^{4,5,6 a-c, 7} / 3$-hydroxyoxindoles. ${ }^{6 c, d, 7,8}$ These strategies focused on catalytic, asymmetric, and synthetic methods, including the asymmetric addition reactions of nucleophiles to isatin imines ${ }^{1,4 a, c, d}$ or isatins, ${ }^{4 b, c, 7}$ aminatio, $\mathrm{n}^{4 \mathrm{a}, \mathrm{c}, 5}$ or hydroxylation ${ }^{4 c, 8}$ of 3 -monosubstituted oxindoles and other reactions. ${ }^{6}$ Despite these achievements, highly efficient and stereoselective methodologies for the expeditious construction of structurally diverse disubstituted 3-aminooxindoles and 3hydroxyoxindoles remain desirable goals.

Some literature surveys reveal that 3 -monosubstituted 3aminooxindoles ${ }^{9} / 3$-hydroxyoxindoles ${ }^{10}$ can be employed as nucleophiles to react with various electrophiles for generation of chiral disubstituted 3-aminooxindoles/3-hydroxyoxindoles. Additionally, the N-Boc-protected aldimines have been widely used in the organocatalytic, asymmetric Mannich reaction for the amino introduction into the chemical structures. ${ }^{11}$ However, the reaction of 3-aminooxindoles/3-hydroxyoxindoles with N-Boc-protected aldimines for asymmetric synthesis of vicinal oxindole-diamines/amino alcohols has not been exploited. In this context, we envisioned that the asymmetric

Mannich reaction between 3-aminooxindoles/3-hydroxyoxindoles and N-Boc-protected aldimines would provide an important complementary way to access new structures of chiral disubstituted 3-aminooxindole/3-hydroxyoxindole (Scheme 1). Herein, we report our research results with respect to this subject by organocatalysis.

Scheme 1. Design for Synthesis of Chiral Vicinal OxindoleDiamines/Amino Alcohols

RESULTS AND DISCUSSION

Our studies began with the model reaction of 3-aminooxindole 1a with amidosulfone 2a, and various chiral bifunctional thiourea-tertiary amine catalysts were screened (Figure 1). Takemoto's catalyst $\mathbf{4 a}$ was first investigated in toluene with

[^0]

Figure 1. Chiral bifunctional thiourea-tertiary amine catalysts screened in this work.
saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Substrate 1a could be consumed completely at $25{ }^{\circ} \mathrm{C}$ for 12 h and gave vicinal oxindole-diamine 3a in 94% yield with $84: 16 \mathrm{dr}$ and 54% ee (Table 1, entry 1). To our delight, 68% ee was obtained by

Table 1. Optimization of Reaction Conditions ${ }^{a}$

${ }^{a}$ Unless otherwise noted, the reactions were performed with 0.1 mmol of $\mathbf{1}, 0.12 \mathrm{mmol}$ of 2 a , and 0.1 mL of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the presence of $10 \mathrm{~mol} \%$ of 4 in 2.0 mL of solvent at 25 ${ }^{\circ} \mathrm{C}$ for the specified reaction time. ${ }^{b}$ Isolated yields of 3 . ${ }^{c}$ Determined by chiral HPLC analysis. ${ }^{d}$ Enantiomeric excess for major diastereoisomers determined by chiral HPLC analysis. ${ }^{e}$ Reaction was carried out at $0^{\circ} \mathrm{C}$.
using the catalyst $\mathbf{4 b}$ with a pyrrolidine structure (entry 2). However, catalysts 4 c and 4 d based on the diphenylethane skeleton provided very poor ee in spite of excellent dr (entries 3 and 4). Further catalyst examination revealed that other chiral bifunctional thiourea-tertiary amines $\mathbf{4 e} \mathbf{- h}$ derived from cinchona alkaloids could not give better enantioselectivities compared with that shown in entry 2 (entries 5-8). The effects of a N -protected group at the C3 position of oxindole were explored. The reaction results revealed substrate 1 c with a N -
$\mathrm{CO}_{2} \mathrm{Et}$ substituent at the C 3 position showed higher stereoselectivity (entry 10 , for 3 c, 98% yield, $90: 10 \mathrm{dr}$ and 86% ee). The following solvent screening confirmed $\mathrm{Cl}_{3} \mathrm{CCH}_{3}$ as the optimal solvent (entry 16). Finally, lowering the reaction temperature to $0^{\circ} \mathrm{C}$ was not beneficial for further improvement of stereoselectivity (entry 18).

After establishment of the optimal reaction conditions, the nonchiral diastereoselectivities of products $3 \mathbf{c}-\mathbf{v}$ (for 3 c , dr 62:38; for 3d, dr 77:23; for 3e, dr 77:23; for 3f, dr 70:30; for 3 g , dr 53:47; for 3h, dr 72:28; for 3i, dr 79:21; for 3j, dr 70:30; for $3 \mathbf{k}$, dr 77:23; for 31, dr 72:28; for 3m, dr 76:24; for 3n, dr 65:35; for 3o, dr 71:29; for 3p, dr 57:43; for 3q, dr 65:35; for 3 r , dr 72:28; for 3s, dr 69:31; for 3t, dr 68:32; for 3u, dr 69:31; for $3 \mathbf{v}$, dr $56: 44$) were obtained by using $\operatorname{DBU}(1,8-$ diazabicyclo[5.4.0]undec-7-ene) as base. Then the asymmetric reaction of 3 -aminooxindole 1c with various amidosulfones $\mathbf{2 b} \mathbf{- j}$ was investigated. Whether the substituent on the phenyl ring was an electron-donating ($2 \mathrm{c}-\mathbf{e}$ and $\mathbf{2 g}$) or electronwithdrawing ($2 \mathbf{h}-\mathbf{j}$) substituent of amidosulfones, all reactions proceeded smoothly to give the desired vicinal oxindolediamines $3 \mathrm{e}-\mathrm{g}, \mathbf{i}, \mathbf{j}-1$ in $83-99 \%$ yields with up to 92% ee (Table 2, entries $3-5,7$, and $8-10$). It is noteworthy that using

Table 2. Scope of Asymmetric Mannich Reaction of 3Aminooxindoles 1 with Amidosulfones 2^{a}

 1c-g 1c: $R^{1}=H, R^{2}=M e$ 1d: $R^{1}=M e, R^{2}=M e$ 1e: $R^{1}=F, R^{2}=M e$ 1f: $R^{1}=H, R^{2}=E t$ 1g: $R^{1}=H, R^{2}=B n$ 2					
entry	1	2	3/yield ${ }^{b}$ (\%)	dr^{c}	$\begin{aligned} & \mathrm{ee}^{d} \\ & (\%) \end{aligned}$
1	1c	$\mathrm{R}=\mathrm{Ph}(2 \mathrm{a})$	3c/99	90:10	91
2	1c	$\mathrm{R}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{2 b})$	3d/99	77:23	77
3	1c	$\mathrm{R}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (2c)	3e/99	90:10	92
4	1c	$\mathrm{R}=3-\mathrm{MeOC} 6 \mathrm{H}_{4}(2 d)$	3f/98	90:10	91
5	1c	$\mathrm{R}=3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{2 e})$	3g/90	90:10 ${ }^{\text {e }}$	92
6	1c	$\mathrm{R}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{2 f})$	3h/83	86:14	82
7	1c	$\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(2 \mathrm{~g})$	3i/93	89:11	92
8	1c	$\mathrm{R}=4-\mathrm{FC}_{6} \mathrm{H}_{4}$ (2h)	3j/96	90:10	91
9	1c	$\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{2 i})$	3k/99	92:8	91
10	1c	$\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{2 j})$	31/83	91:9	92
11	1c	$\mathrm{R}=2$-furyl (2k)	3m/98	86:14	86
12	1c	$\mathrm{R}=2$-thienyl (2l)	3n/72	88:12	90
13	1d	$\mathrm{R}=\mathrm{Ph}(\mathbf{2 a})$	30/99	89:11	89
14	1e	$\mathrm{R}=\mathrm{Ph}(2 \mathrm{a})$	3p/99	87:13	89
15	1f	$\mathrm{R}=\mathrm{Ph}(2 \mathrm{a})$	3q/98	79:21	90
16	1 g	$\mathrm{R}=\mathrm{Ph}(2 \mathrm{a})$	3r/98	94:6	96
17	1 g	$\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{2 m})$	3s/98	95:5	92
18	1 g	$\mathrm{R}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}(2 n)$	3t/98	94:6	96
19	1 g	$\mathrm{R}=3-\mathrm{BrC}_{6} \mathrm{H}_{4}(2 \mathrm{o})$	3u/99	94:6	95
20	1 g	$\mathrm{R}=1$-naphthyl (2p)	3v/79	73:27	85

${ }^{a}$ Unless otherwise noted, the reactions were performed with 0.1 mmol of $1,0.12 \mathrm{mmol}$ of 2 , and 0.1 mL of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the presence of $10 \mathrm{~mol} \%$ of $\mathbf{4 b}(4.4 \mathrm{mg}, 0.01 \mathrm{~mol})$ in 2.0 mL of $\mathrm{Cl}_{3} \mathrm{CCH}_{3}$ at $25{ }^{\circ} \mathrm{C}$ for 12 h . ${ }^{b}$ Isolated yields of 3. ${ }^{c}$ Determined by chiral HPLC analysis. ${ }^{d}$ Enantiomeric excess for major diastereoisomers determined by chiral HPLC analysis. ${ }^{e}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the mixture of two diastereoisomers.
the sterically demanding $2 \mathbf{b}$ and $2 f$ with strong electronwithdrawing nitro group on the phenyl ring as substrates gave rise to the products 3 d and 3 h in lower ee (entries 2 and 6). In addition, two heteroaromatic amidosulfones $2 \mathbf{k}$ and $\mathbf{2 l}$ were also successfully employed in the reaction and afforded the corresponding products 3 m and 3 n with good results (entries 11 and 12). The absolute configuration of the major stereoisomer $3 \mathbf{n}$ was determined as (C5R,C11S) by X-ray crystallographic analysis (see the Supporting Information). The stereochemistry of other compounds 3 and 8 was identified by analogy. Furthermore, examination of the substituent on the phenyl ring and $\mathrm{N}-1$ position of 3-aminooxindole indicated N -benzyl-substituted 3 -aminooxindole $\mathbf{1 g}$ could give higher enantioselectivity (entries 13-16). To further explore the substrate scope of the asymmetric Mannich reaction, 3aminooxindole 1 g was subsequently used as the nucleophile to react with other four amidosulfones $\mathbf{2 m} \mathbf{- p}$. It was observed that amidosulfones $2 \mathrm{~m}-\mathbf{o}$ could offer the corresponding products $3 \mathbf{s}-\mathbf{u}$ in good yields with excellent stereoselectivities (entries 17-19) except for the bulky 1-naphthyl-substituted amidosulfone $2 \mathbf{p}$ (entry 20). Finally, the point was that compounds 3 c and $3 \mathrm{e}-\mathrm{v}$ showed remarkable enhancement in diastereoselectivity from the chiral catalyst with the exception of compound 3d through comparison of the nonchiral diastereoselectivities and chiral diastereoselectivities.

On the basis of the synthesis of a series of chiral vicinal oxindole-diamines 3, the asymmetric Mannich reaction between 3-hydroxyoxindoles 5 and amidosulfones 2 was also explored for the purpose of producing a variety of chiral vicinal oxindole-amino alcohols 6. Initially, the nonchiral diastereoselectivities of products $\mathbf{6 a}-\mathrm{k}$ (for $\mathbf{6 a}, \mathrm{dr} 68: 32$; for $\mathbf{6 b}$, dr 48:52; for 6c, dr 33:67; for 6d, dr 38:62; for 6e, dr 45:55; for 6f, dr 35:65; for $\mathbf{6 g}$, dr 46:54; for $\mathbf{6 h}$, dr 41:59; for $\mathbf{6 i} \mathbf{i}$ dr 52:48; for $\mathbf{6 j}$, dr 41:59; for $\mathbf{6 k}$, dr 52:48) were obtained by using DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) as base. Subsequently, with Takemoto's catalyst $\mathbf{4 a}$ and dichloromethane as solvent, the reaction of N -methyl-substituted 3-hydroxyoxindole $\mathbf{5 a}$ with amidosulfone 2a proceeded smoothly to afford the corresponding vicinal oxindole-amino alcohol 6a in 75% yield with good enantioselectivity (Table 3, entry 1). However, other solvents $\left(\mathrm{CH}_{3} \mathrm{CCl}_{3}\right.$: 62% yield, $89: 11 \mathrm{dr}$ and 84% ee; toluene: 76% yield, $91: 9 \mathrm{dr}$ and 81% ee; THF: 77% yield, $71: 29 \mathrm{dr}$ and 1% ee; $\mathrm{CH}_{3} \mathrm{CN}: 69 \%$ yield, 51:49 dr and 8% ee) could not provide preferable results. In contrast, N-benzyl-substituted substrate $\mathbf{5 b}$ gave better results (entry 2 vs entry 1). Thus, it was next employed as the nucleophile to react with various amidosulfones 2 . Investigation showed amidosulfones $2 \mathrm{c}, 2 \mathrm{~g}, \mathbf{2 m}$, and 2 e with an electron-donating substituent on phenyl ring could provide the desired products $\mathbf{6 c - f}$ in $72-90 \%$ yields with up to 92% ee (entries 3-6). However, inferior enantioselectivities were obtained from substrates $2 \mathbf{i}$ and $\mathbf{2 j}$ with electronwithdrawing substituents on the phenyl ring (entries 7 and 8). Additionally, 2 -thienyl-substituted substrate 21 was also applicable to the asymmetric Mannich reaction process and gave the product 6i in good results (entry 9). Examination of the substituent on the phenyl ring of 3-hydroxyoxindole indicated there were no significant effects on the reaction stereoselectivities (entries 10 and 11). Eventually, it was emphasized that compounds $\mathbf{6 b}-\mathbf{h}$ and $\mathbf{6 j}$ showed remarkable enhancement and a reversal in diastereoselectivity from the chiral catalyst with the exception of compounds $\mathbf{6 a}, \mathbf{6 i}$, and $\mathbf{6 k}$ through the comparasion of the nonchiral diastereoselectivities and chiral diastereoselectivities.

Table 3. Scope of Asymmetric Mannich Reaction of 3Hydroxyoxindoles 5 with Amidosulfones 2^{a}

5a: $R^{1}=H, R^{2}=M e$
5b: $R^{1}=H, R^{2}=B n$
5c: $\mathrm{R}^{1}=5-\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Bn}$
5d: $R^{1}=7-F, R^{2}=B n$

entry	$\mathbf{5}$	$\mathbf{2}$					$\mathbf{6} /$ yield b $(\%)$	dr^{c}	ee d $(\%)$
$\mathbf{1}$	$\mathbf{5 a}$	$\mathrm{R}=\mathrm{Ph}(\mathbf{2 a})$	$\mathbf{6 a} / 75$	$91: 9$	84				
$\mathbf{2}$	$\mathbf{5 b}$	$\mathrm{R}=\mathrm{Ph}(\mathbf{2 a})$	$\mathbf{6 b} / 91$	$90: 10$	87				
3	$\mathbf{5 b}$	$\mathrm{R}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 c})$	$\mathbf{6 c} / 80$	$90: 10$	87				
4	$\mathbf{5 b}$	$\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 g})$	$\mathbf{6 d} / 78$	$91: 9$	88				
5	$\mathbf{5 b}$	$\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{2 m})$	$\mathbf{6 e} / 74$	$82: 18$	88				
6	$\mathbf{5 b}$	$\mathrm{R}=3,4-\left(\mathrm{MeO}_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathbf{2 e})\right.$	$\mathbf{6 f} / 72$	$84: 16$	92				
7	$\mathbf{5 b}$	$\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{2 i})$	$\mathbf{6 g} / 77$	$82: 18$	80				
8	$\mathbf{5 b}$	$\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{2 j})$	$\mathbf{6 h} / 69$	$83: 17$	78				
9	$\mathbf{5 b}$	$\mathrm{R}=2-\operatorname{thienyl}(\mathbf{2 l})$	$\mathbf{6 i} / 84$	$90: 10$	85				
10	$\mathbf{5 c}$	$\mathrm{R}=\mathrm{Ph}(\mathbf{2 a})$	$\mathbf{6 j} / 89$	$91: 9$	86				
11	$\mathbf{5 d}$	$\mathrm{R}=\mathrm{Ph}(\mathbf{2 a})$	$\mathbf{6 k} / 37$	$88: 12$	90				

${ }^{a}$ Unless otherwise noted, the reactions were performed with 0.1 mmol of $5,0.12 \mathrm{mmol}$ of 2 , and 0.1 mL of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the presence of $10 \mathrm{~mol} \%$ of $4 \mathrm{a}(4.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ under N_{2} atmosphere for 12 h . ${ }^{b}$ Isolated yields of 6. ${ }^{c}$ Determined by chiral HPLC analysis. ${ }^{d}$ Enantiomeric excess for major diastereoisomers determined by chiral HPLC analysis.

The synthetic application of this protocol was demonstrated by the versatile transformation of chiral vicinal oxindolediamine $3 \mathbf{u}$ and oxindole-amino alcohol 6a into the spirocyclic oxindoles 8 and 10 (Scheme 2). At the beginning, the Boc

Scheme 2. Transformation of Products 3 u and 6a into Spirocyclic Oxindoles 8 and 10

group of $3 \mathbf{u} / \mathbf{6 a}$ was easily removed by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ to give the primary amine 7/9. When $\mathrm{Et}_{3} \mathrm{~N}$ was used as base, the unpurified primary amine $7 / 9$ was used to react with $\mathrm{di}(1 \mathrm{H}-$ imidazol-1-yl)methanethione, giving the spirocyclic oxindoles 8 and 10 in good yields and without reduced stereoselectivities for two steps.

According to the previous report ${ }^{11 \mathrm{e}}$ and established stereochemistry of major stereoisomer $3 \mathbf{n}$, a possible reaction mechanism involving dual activation of catalyst $\mathbf{4 b}$ was proposed (Scheme 3). 3-Aminooxindoles 1 were enolized by the tertiary amine moiety though the deprotonation. Simultaneously, N-Boc-protected aldimines in situ generated were

Scheme 3. Proposed Transition State for Production of Compounds 3

activated by thiourea moiety through the hydrogen-bonding interaction. The Si-face attack of enolized 3 -aminooxindole to the Re-face of aldimines then led to the production of vicinal oxindole-diamine 3 .

In conclusion, we have developed an efficient complementary methodology for stereoselective synthesis of disubstituted 3-aminooxindole/3-hydroxyoxindole via the asymmetric Mannich reaction of 3 -monosubsituted 3 -aminooxindoles/3-hydroxyoxindoles with in situ generated N-Boc protected aldimines catalyzed by the chiral bifunctional thiourea-tertiary amine catalyst. Under mild reaction conditions, a wide range of vicinal oxindole-diamines/amino alcohols were obtained in up to 99% yield with $95: 5 \mathrm{dr}$ and 96% ee. The synthetic application of this protocol was also demonstrated by the versatile transformation of chiral vicinal oxindole-diamine $3 \mathbf{u}$ and oxindole-amino alcohol 6a into the spirocyclic oxindole compounds.

EXPERIMENTAL SECTION

General Methods. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR (300, 400, and 75, 100 MHz , respectively) spectra were recorded in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm$)$. Data are reported as follows: chemical shift, multiplicity ($s=$ singlet, $\mathrm{br} s=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet and $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.16 ppm).

General Procedure for the Synthesis of Vicinal OxindoleDiamines 3. In an ordinary vial equipped with a magnetic stirring bar, 3 -aminooxindoles 1 ($0.1 \mathrm{mmol}, 1$ equiv), amidosulfones $2(0.12 \mathrm{mmol}$, 1.2 equiv), and catalyst $\mathbf{4 b}(4.4 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in 2.0 mL of $\mathrm{Cl}_{3} \mathrm{CCH}_{3}$, and then 0.1 mL of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added into the solution. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, as indicated by TLC, the reaction mixture was directly purified by flash chromatography (petroleum ether/ethyl acetate $=5 / 1-2 / 1$) to furnish the corresponding products 3.
(S,S)-tert-Butyl (3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoindo-lin-3-yl)(phenyl)methylcarbamate (3c). White solid; 43.5 mg , yield 99%; 90:10 dr, 91% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-36.6$ (c 1.00, CHCl_{3}). Mp: 116.5$117.5^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=15.1 \mathrm{~min}, t_{\text {major }}=17.3 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $2.87(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 2H), 6.97-7.07 (m, 4H), 7.11-7.15 (m, 1H), 7.38 (d, $J=7.2 \mathrm{~Hz}$, 1 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.5 , 26.0, 28.4, 59.3, 61.5, 64.4, 80.7, 108.0, 122.9, 127.4, 127.5, 127.9, 129.5, 134.9, 143.3, 155.0, 156.3, 174.8. HRMS (ESI-TOF): calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 462.1999$, found 462.2014 .
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(2-methoxylphenyl)methyl)carbamate (3d). White solid; 46.5 mg , yield 99%; 77:23 dr, 77% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=+6.8\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

Mp: $117.8-119.2^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak $\mathrm{AD}-\mathrm{H}, i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=13.2 \mathrm{~min}, t_{\text {major }}=19.1 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.16-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.43$ $(\mathrm{s}, 9 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.39$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.74(\mathrm{~m}, 2 \mathrm{H})$, $6.91-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): δ (major diastereomer) 14.5, 26.1, 28.4, 54.9, 55.3, 61.3, 64.7, 80.4, 107.3, 110.0, 119.7, 121.7, 124.1, 127.2, 129.1, 129.3, 129.7, 143.3, 154.9, 156.0, 156.4, 175.3. HRMS (ESI-TOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$492.2105, found 492.2091.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(3-methylphenyl)methyl)carbamate (3e). White solid; 44.9 mg , yield 99%; 90:10 dr, 92% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-26.5$ (c 1.00, CHCl_{3}). Mp: $123.1-124.6{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i-PrOH/hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $\left.t_{\text {minor }}=11.6 \mathrm{~min}, t_{\text {major }}=13.8 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.17(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.02-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 14.5, 21.2, 25.9, 28.5, $59.3,61.4,64.5,80.7,108.0,122.8,122.9,123.4,124.5,127.2,128.4$, 128.6, 129.4, 134.7, 137.1, 143.3, 155.0, 156.4, 174.8. HRMS (ESITOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$476.2156, found 476.2139. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 66.21; H, 6.89; N, 9.27. Found: C, 66.03; H, 6.89; N, 9.07.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(3-methoxylphenyl)methyl)carbamate (3f). White solid; 46.0 mg , yield 98%; $90: 10 \mathrm{dr}, 91 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-20.2$ (c 1.00 , CHCl_{3}).Mp: $122.5-124.0^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $\left.t_{\text {minor }}=16.0 \mathrm{~min}, t_{\text {major }}=19.8 \mathrm{~min}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.17 (br s, 3 H), $1.45(\mathrm{~s}, 9 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 6.41-6.50(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92-6.96 (m, 1H), 7.04-7.08(m, 1H), 7.13-7.17 (m, 1H), $7.38(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 14.5, 26.0, 28.5, 55.2, 59.2, 61.5, 64.3, 80.7, 108.2, 112.8, 114.4, 119.5, 122.8, 122.9, 123.4, 128.4, 129.5, 136.5, 143.5, 154.9, 156.3, 158.6, 174.8. HRMS (ESI-TOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$ 492.2105, found 492.2095 .
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(3,4-dimethoxylphenyl)methyl)carbamate (3g). White solid; 45.0 mg , yield 90%; $90: 10 \mathrm{dr}, 92 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-33.9$ (c 1.00, CHCl_{3}). Mp: $127.9-129.5{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $\left.t_{\text {minor }}=34.2 \mathrm{~min}, t_{\text {major }}=27.8 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H})$, $5.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.43-6.56(\mathrm{~m}$, $4 \mathrm{H}), 7.06-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4, 26.0, 28.4, 55.6, 55.8, 58.8, 61.4, 64.3, 80.6, 108.3, 109.8, 110.9, 119.3, 122.7, 122.8, 127.4, 128.5, 129.5, 143.5, 147.6, 148.3, 154.9, 156.1, 174.9. HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 522.2211, found 522.2198 .
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(3-nitrophenyl)methyl)carbamate (3h). White solid; 40.2 mg , yield 83%; $86: 14 \mathrm{dr}, 82 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-11.3$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $132.7-134.3^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=19.1 \mathrm{~min}, t_{\text {major }}=24.8 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.15(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.39$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.21$ $(\mathrm{s}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4, 26.1, 28.4, 58.7, 61.7, 63.5, 81.1, 108.4, 122.7, 123.0, 123.2, 123.5,
127.3, 128.3, 130.1, 133.5, 137.9, 142.9, 147.3, 154.9, 155.8, 174.5. HRMS (ESI-TOF): calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$507.1850, found 507.1840.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(4-methylphenyl)methyl)carbamate (3i). White solid; 42.2 mg , yield 93%; $89: 11 \mathrm{dr}, 92 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-33.0$ (c 1.00 , $\left.\mathrm{CHCl}_{3}\right) . \mathrm{Mp}: 110.9-112.0^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $\left.t_{\text {minor }}=11.7 \mathrm{~min}, t_{\text {major }}=14.0 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.17 (br s, 3 H), $1.45(\mathrm{~s}, 9 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.02-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 14.4, 21.2, 25.9, 28.4, 59.2, 61.4, 64.5, 80.6, 108.0, 122.8, 122.9, 124.5, 127.2, 128.4, 128.6, 129.3, 134.8, 137.0, 143.3, 155.0, 156.3, 174.8. HRMS (ESI-TOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$476.2156, found 476.2161.
(S,S)-tert-butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(4-fluorophenyl)methyl)carbamate (3j). White solid; 43.9 mg , yield 96%; 90:10 dr, 91% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-37.3\left(\right.$ c 1.00, $\left.\mathrm{CHCl}_{3}\right)$. Mp: $124.7-125.9^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=15.0 \mathrm{~min}, t_{\text {major }}=23.6 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.15(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H})$, 6.77-6.80 (m, 2H), 7.03-7.07 (m, 1H), 7.13-7.17 (m, 1H), $7.36(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 14.4, 26.0, 28.4, 58.6, 61.5, 64.1, 80.8, 108.2, 114.3 (d, $J=21.4 \mathrm{~Hz}$, 1C), 122.9, 123.1, 128.0, 129.2 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{C}), 129.6,131.0,143.2$, 154.9, 156.1, $162.2(\mathrm{~d}, J=245.7 \mathrm{~Hz}, 1 \mathrm{C}), 174.8$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$480.1905, found 480.1903.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(4-chlorophenyl)methyl)carbamate (3k). White solid; 46.9 mg , yield 99%; $92: 8 \mathrm{dr}$, 91% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-40.1$ (c 1.00, CHCl_{3}). Mp: $128.7-129.6^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak OD-H, $i-\mathrm{PrOH} /$ hexane $=8 / 92$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $\left.t_{\text {minor }}=34.3 \mathrm{~min}, t_{\text {major }}=17.4 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.14 (br s, 3H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (br s, 1H), $6.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ (major diastereomer) 14.4, 26.0, 28.4, 58.6, 61.5, 63.9, 80.8, 108.3, 122.9, 123.1, 127.6, 128.1, 128.9, 129.7, 133.8, 133.9, 143.3, 155.0, 156.0, 174.8. HRMS (ESI-TOF): calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{NaO}_{5}[\mathrm{M}+$ $\mathrm{Na}]^{+}$496.1610, found 496.1611.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(4-bromophenyl)methyl)carbamate (3I). White solid; 43.0 mg , yield 83%; $91: 9 \mathrm{dr}, 92 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-49.0$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) . \mathrm{Mp}: 128.1-129.5{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $\left.t_{\text {minor }}=21.8 \mathrm{~min}, t_{\text {major }}=38.9 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.16 (br s, 3 H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (br s, 1H), 6.44-6.48 (m, 1H), 6.52-6.58 (m, 1H), $6.69(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4 , 26.1, 28.4, 58.7, 61.6, 63.9, 80.9, 108.4, 122.1, 122.9, 123.1, 129.2, 129.5, 129.8, 130.6, 134.4, 143.2, 154.9, 156.0, 174.8. HRMS (ESITOF): calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$540.1105, found 540.1094.
(S,R)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(2-furyl)methyl)carbamate (3m). White solid; 42.1 mg , yield 98%; $86: 14 \mathrm{dr}, 86 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-10.9$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $107.9-109.1^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak OD-H, $i-\mathrm{PrOH} /$ hexane $=3 / 97$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=71.6 \mathrm{~min}, t_{\text {major }}=22.3 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.14(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$,
$3.06(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.03$ $(\mathrm{s}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.31$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 14.4, 26.4, 28.4, 53.7, 61.4, 63.7, 81.0, 108.0, 108.4, 110.1, 123.0, 128.0, 129.6, 142.1, 142.4, 143.7, 148.6, 154.9, 156.5, 174.6. HRMS (ESITOF): calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$452.1792, found 452.1792.
(S,R)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-2-oxoin-dolin-3-yl)(2-thienyl)methyl)carbamate (3n). White solid; 32.1 mg , yield 72%; $88: 12 \mathrm{dr}$, 90% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-6.6$ (c 1.00, CHCl_{3}). Mp: $95.8-97.3^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak OD-H, $i-$ $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=26.6 \mathrm{~min}, t_{\text {major }}=8.7 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): δ (major diastereomer) $1.15(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.47$ (s, 9H), 2.96 (s, $3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.5, 26.2, 28.4, 55.4, 61.5, 64.1, 81.0, 108.3, 123.0, 123.2, 125.0, 125.6, 126.0, 126.1, 129.8, 138.3, 144.1, 154.9, 156.2, 174.7. HRMS (ESITOF): calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 468.1564$, found 468.1563.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1,5-dimethyl-2-ox-oindolin-3-yl)(phenyl)methyl)carbamate (30). White solid; 44.9 mg , yield 99%; $89: 11 \mathrm{dr}$, 89% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-60.5$ (c 1.00, CHCl_{3}). $\mathrm{Mp}: 112.6-113.8{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak $\mathrm{AD}-\mathrm{H}, i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=12.3 \mathrm{~min}, t_{\text {major }}=10.9 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.21(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44$ (s, $9 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.19$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4, 21.4, 26.0, 28.4, 59.2, 61.4, 64.4, 80.6, 107.8, 123.7, 127.4, 127.5, 127.8, 129.7, 132.4, 135.0, 140.9, 155.0, 156.3, 174.7. HRMS (ESI-TOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 476.2156$, found 476.2152.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-methyl-5-fluoro-2-oxoindolin-3-yl)(phenyl)methyl)carbamate (3p). White solid; 45.3 mg , yield 99%; $87: 13 \mathrm{dr}, 89 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-24.8\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $111.3-112.6^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i - $\mathrm{PrOH} /$ hexane $=8 / 92$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=16.5 \mathrm{~min}, t_{\text {major }}=12.5 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $2.86(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.31(\mathrm{~m}$, $1 \mathrm{H}), 6.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.86(\mathrm{~m}, 3 \mathrm{H})$, 7.02-7.13 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $14.5,26.1,28.4,59.1,61.6,64.6,80.8,108.7,111.1$ (d, J $=25.1 \mathrm{~Hz}, 1 \mathrm{C}), 115.7(\mathrm{~d}, J=23.4 \mathrm{~Hz}, 1 \mathrm{C}), 127.4,127.5,127.6,128.0$, 128.1, 134.7, 139.2, 155.0, 156.2, 159.4 (d, $J=240.6 \mathrm{~Hz}, 1 \mathrm{C}), 174.6$. HRMS (ESI-TOF): calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$480.1905, found 480.1898.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-ethyl-2-oxoindo-lin-3-yl)(phenyl)methyl)carbamate (3q). White solid; 44.4 mg , yield 98%; 79:21 dr, 90% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-31.0$ (c 1.00, CHCl_{3}). Mp: 246.9$247.5^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=16.2 \mathrm{~min}, t_{\text {major }}=17.2 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16$ (br s, 3H), $1.44(\mathrm{~s}, 9 \mathrm{H}), 3.33-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.97$ $(\mathrm{s}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-7.06(\mathrm{~m}$, $4 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 12.0, 14.4, 28.4, 34.7, 59.0, 61.4, 63.9, 80.6, 108.2, 122.7, 123.3, 127.5, 127.7, 127.8, 128.2, 129.4, 135.0, 142.7, 154.9, 156.2, 174.5. HRMS (ESI-TOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 476.2156$, found 476.2141. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 66.21; H, 6.89; N, 9.27. Found: C, 66.07; H, 6.88; N, 9.12 .
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-benzyl-2-oxoindo-lin-3-yl)(phenyl)methyl)carbamate (3r). White solid; 50.5 mg , yield 98\%; 94:6 dr, 96% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-17.5$ (c 1.00, CHCl_{3}). Mp: 117.8$118.3^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=25.5 \mathrm{~min}, t_{\text {major }}=19.9 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.19(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $4.02(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{br} s, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H})$, 7.19-7.20 (m, 3H), 7.39-7.41 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): δ (major diastereomer) 14.4, 28.4, 44.1, 58.9, 61.4, 64.1, 80.6, 109.4, 122.9, 123.1, 127.0, 127.3, 127.7, 127.9, 128.2, 128.7, 129.1, 129.4, 129.8, 135.0, 143.0, 154.9, 156.2, 175.3. HRMS (ESI-TOF): calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 538.2312$, found 538.2311.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-benzyl-2-oxoindo-lin-3-yl)(4-methoxylphenyl)methyl)carbamate (3s). White solid; 53.5 mg , yield 98%; $95: 5 \mathrm{dr}, 92 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-49.4$ (c 1.00 , CHCl_{3}). Mp: $123.7-124.6{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak OD-H, i-PrOH $/$ hexane $=5 / 95$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , major diastereomer: $t_{\text {minor }}=26.4 \mathrm{~min}, t_{\text {major }}=19.5 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.18 (br s, 3 H), $1.46(\mathrm{~s}, 9 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.51-6.53(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.78$ $(\mathrm{m}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.39(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4, 28.4, 44.1, 55.2, 58.3, 61.4, 64.2, 80.6, 109.5, 113.1, 122.9, 123.0, 127.0, 127.1, 127.4, 128.4, 128.6, 128.8, 129.4, 135.0, 143.1, 154.9, 156.2, 159.1, 175.4. HRMS (ESI-TOF): calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 568.2418$, found 568.2434 .
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-benzyl-2-oxoindo-lin-3-yl)(3-chlorophenyl)methyl)carbamate (3t). White solid; 53.9 mg , yield 98%; $94: 6 \mathrm{dr}, 96 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-27.0\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $115.3-116.8^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak OD-H, $i-\mathrm{PrOH} /$ hexane $=3 / 97$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=56.3 \mathrm{~min}, t_{\text {major }}=27.2 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $4.02(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4, 28.4, 44.2 , 58.5, 61.5, 63.8, 80.9, 109.6, 123.1, 123.2, 126.0, 126.9, 127.5, 127.8, 128.1, 128.6, 128.8, 128.9, 129.7, 133.8, 135.0, 137.4, 143.0, 154.8, 156.0, 175.1. HRMS (ESI-TOF): calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{NaO}_{5}[\mathrm{M}+$ $\mathrm{Na}]^{+} 572.1923$, found 572.1919 .
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-benzyl-2-oxoindo-lin-3-yl)(3-bromophenyl)methyl)carbamate (3u). White solid; 58.9 mg , yield 99%; $94: 6 \mathrm{dr}, 95 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-33.2$ (c 1.00, CHCl_{3}). Mp: $120.3-121.3^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak OD-H, $i-\mathrm{PrOH} /$ hexane $=3 / 97$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=52.4 \mathrm{~min}, t_{\text {major }}=27.3 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.18 (br s, 3 H), $1.47(\mathrm{~s}, 9 \mathrm{H})$, $4.02(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.4, 28.4, 44.2, 58.5, 61.5, 63.8, 80.9, 109.6, 121.8, 123.1, 123.2, 126.5, 126.9, 127.5, 127.8, 128.8, 129.2, 129.7, 130.7, 131.0, 134.9, 137.7, 142.9, 154.8, 155.9, 175.1. HRMS (ESI-TOF): calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{NaO}_{5}$ [M + $\mathrm{Na}]^{+}$616.1418, found 616.1416.
(S,S)-tert-Butyl ((3-((Ethoxycarbonyl)amino)-1-benzyl-2-oxoindo-lin-3-yl)(1-naphthyl)methyl)carbamate (3v). Colorless oil; 44.7 mg , yield 79%; $73: 27 \mathrm{dr}, 85 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=+106.3$ (c 1.00, CHCl_{3}). The ee was determined by HPLC (Chiralpak OD-H, i-PrOH/hexane $=5 / 95$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=47.4$ $\left.\min , t_{\text {maior }}=20.9 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.20(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$
$(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-$ $6.73(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.59-7.62(\mathrm{~m}$, 2 H), $8.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 14.5, 28.4, 44.3, 52.4, 61.4, 64.8, 80.7, 108.8, 122.4, 123.3, 124.0, 124.3, 124.5, 125.5, 125.9, 126.9, 127.4, 127.5, 128.4, 128.7, 128.8, 129.1, 131.0, 132.3, 133.1, 135.2, 142.4, 154.9, 156.5, 175.8. HRMS (ESI-TOF) calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 588.2469 , found 588.2460 .

General Procedure for the Synthesis of Vicinal OxindoleAmino Alcohols 6. In an ordinary vial equipped with a magnetic stirring bar were dissolved 3 -hydroxyoxindoles $5(0.1 \mathrm{mmol}, 1$ equiv), amidosulfones 2 ($0.12 \mathrm{mmol}, 1.2$ equiv), and catalyst $4 \mathrm{a}(4.1 \mathrm{mg}, 0.01$ mmol) in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then 0.1 mL of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added into the solution. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 12 h . After completion of the reaction, as indicated by TLC, the reaction mixture was directly purified by flash chromatography (petroleum ether/ethyl acetate $=5 /$ $1-2 / 1$) to furnish the corresponding products 6.
tert-Butyl ((3-Hydroxy-1-methyl-2-oxoindolin-3-yl)(phenyl)methyl)carbamate ($6 a$). Colorless oil; 27.6 mg , yield 75%; $91: 9 \mathrm{dr}$, 84% ee. $[\alpha]_{\mathrm{D}}^{25}=+9.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} /$ $\min , \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=22.6 \mathrm{~min}, t_{\text {major }}=20.4$ $\mathrm{min}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.42(\mathrm{~s}$, $9 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.12(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 25.8 , $28.5,61.2$, 77.3, 80.4, 108.3, 123.3, 124.4, 127.4, 127.6, 127.7, 128.0, 130.1, 136.1, 143.3, 156.1, 176.6. HRMS (ESI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+$ $\mathrm{Na}]^{+}$391.1628, found 391.1620.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(phenyl)methyl)carbamate (6b). Light yellow solid; 40.5 mg , yield 91%; $90: 10 \mathrm{dr}, 87 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-9.5\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}: 101.7-103.2$ ${ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i-PrOH/ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=32.6 \mathrm{~min}, t_{\text {major }}=51.9 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.45(\mathrm{~s}, 9 \mathrm{H}), 4.23-4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 4 \mathrm{H})$, $7.12-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): δ (major diastereomer) 28.5, 43.7, 60.6, 77.0, 80.5, 109.7, 123.4, 124.6, 126.9, 127.5, 127.7, 128.1, 128.2, 128.5, 128.7, 130.2, 134.7, 136.0, 142.9, 156.1, 176.8. HRMS (ESI-TOF): calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$467.1941, found 467.1925.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(m-tolyl)methyl)carbamate (6 c). Light yellow oil; 36.7 mg , yield 80%; $90: 10$ dr, 87% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} /$ $\min , \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=23.3 \mathrm{~min}, t_{\text {major }}=33.4$ $\mathrm{min}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.46 (s , 9 H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.79(\mathrm{~m}, 2 \mathrm{H})$, $6.92-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 21.4, 28.5, 43.7, 60.5, 77.1, 80.5, 109.8, 123.3, 124.6, 124.8, 126.7, 127.5, 127.9, 128.1, 128.4, 128.5, 128.7, 130.1, 134.7, 135.9, 137.7, 143.0, 156.1, 176.8. HRMS (ESI-TOF): calcd for HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 481.2098$, found 481.2082.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(p-tolyl)methyl)carbamate (6 d). Colorless oil; 35.8 mg , yield 78%; $91: 9 \mathrm{dr}$, 88% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} /$ $\min , \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=23.3 \mathrm{~min}, t_{\text {maior }}=33.3$ min). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 1.46 (s , $9 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.92-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.08-$
$7.21(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 21.4, 28.5, 43.7, 60.6, 77.1, 80.5, 109.8, 123.3, 124.6, 124.8, 126.7, 127.5, 128.0, 128.4, 128.5, 128.7, 130.2, 134.7, 135.8, 137.7, 143.1, 156.1, 176.9. HRMS (ESI-TOF): calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$481.2098, found 481.2083.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(4methoxyphenyl)methyl)carbamate (6e). Light yellow solid; 35.1 mg , yield 74%; $82: 18 \mathrm{dr}, 88 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.5\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $116.9-118.4^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=44.3 \mathrm{~min}, t_{\text {major }}=78.1 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.45(\mathrm{~s}, 9 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.08$ $(\mathrm{s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 28.5, 43.7, 55.2, $60.0,77.0,80.5,109.8,113.5,123.4,124.5,126.7,126.9,127.6,128.0$, 128.7, 128.8, 129.4, 130.2, 134.7, 143.1, 156.1, 159.0, 176.9. HRMS (ESI-TOF): calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$497.2047, found 497.2042. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 70.87; H, 6.37; N, 5.90. Found: C, 69.56; H, 6.37; N, 5.91.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(3,4dimethoxyphenyl)methyl)carbamate (6f). Light yellow solid; 36.3 mg , yield 72%; $84: 16 \mathrm{dr}, 92 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-13.1\left(c \quad 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $123.4-124.9{ }^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak IA3, i $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=52.6 \mathrm{~min}, t_{\text {major }}=28.5 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.45(\mathrm{~s}, 9 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.35-6.42(\mathrm{~m}, 1 \mathrm{H}), 6.49-$ $6.60(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 28.5, 43.7, 55.6, 55.7, 60.2, 77.0, 80.5, 109.9, 110.5, 111.2, 119.2, 123.2, $124.5,126.6,126.7,127.6,128.3,128.7,130.2,134.4,143.2,148.0$, 148.4, 156.1, 176.9. HRMS (ESI-TOF): calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ [M $+\mathrm{Na}]^{+}$527.2153, found 527.2155.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(4chlorophenyl)methyl)carbamate (6g). Colorless oil; 36.9 mg , yield 77%; $82: 18 \mathrm{dr}, 80 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-13.1$ (c 1.00, CHCl_{3}). The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=26.5$ $\left.\min , t_{\text {major }}=45.6 \mathrm{~min}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.44(\mathrm{~s}, 9 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 28.5 , 43.8, 60.0, 76.7, 80.7, 109.9, 123.6, 124.6, 126.7, 126.9, 127.7, 128.3, 128.8, 129.1, 130.5, 133.7, 134.6, 134.7, 143.0, 155.9, 176.6. HRMS (ESI-TOF): calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$501.1552, found 501.1541.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(4bromophenyl)methyl)carbamate (6h). Light yellow solid; 36.1 mg , yield 69%; $83: 17 \mathrm{dr}, 78 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.6\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}$: $123.5-125.1^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=29.0 \mathrm{~min}, t_{\text {major }}=55.6 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.44(\mathrm{~s}, 9 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 4.41$ $(\mathrm{d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.55$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 28.5, 43.9, 60.1, 76.6, 80.7, 109.9, 121.9, 123.5, 124.6, 126.9, 127.6, 127.7, 128.8, 129.4, 130.5, 131.2, 134.6, 135.3, 143.0, 155.9, 176.6. HRMS (ESI-TOF): calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+$ $\mathrm{Na}]^{+}$545.1046, found 545.1030.
tert-Butyl ((1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)(thiophene-2yl)methyl)carbamate 6 i. White solid; 37.8 mg , yield 84%; $90: 10 \mathrm{dr}$, 85% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-0.5\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}: 114.1-115.6^{\circ} \mathrm{C}$. The ee
was determined by HPLC (Chiralpak IC3, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=61.5$ $\left.\min , t_{\text {major }}=50.2 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.48(\mathrm{~s}, 9 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.55(\mathrm{~m}$, $3 \mathrm{H}), 6.76(\mathrm{~s}, 3 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 4 \mathrm{H}), 7.51$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 28.5, 43.8, 56.8, 76.4, 80.8, 109.9, 123.6, 124.6, 125.1, 125.7, 126.6, 126.8, 127.5, 127.7, 128.8, 130.6, 134.7, 139.8, 143.7, 156.0, 176.5. HRMS (ESI-TOF): calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+$ $\mathrm{Na}]^{+} 473.1505$, found 473.1508 .
tert-Butyl ((1-Benzyl-3-hydroxy-5-methoxy-2-oxoindolin-3-yl)(phenyl)methyl)carbamate (6j). Light yellow solid; 42.2 mg , yield 89%; $91: 9 \mathrm{dr}, 86 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-48.2$ (c 1.00, CHCl_{3}). Mp: 116.5$117.8^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak AD-H, i $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $\left.t_{\text {minor }}=41.8 \mathrm{~min}, t_{\text {major }}=37.1 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) $1.45(\mathrm{~s}, 9 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.11$ $(\mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.14-$ $7.19(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 28.5, 43.8, 55.9, 60.6, 77.3, 80.6, 110.5, 111.0, 115.4, 126.7, 126.9, 127.5, 127.7, 127.8, 128.1, 128.7, 134.8, 136.0, 136.2, 156.1, 156.5, 176.6. HRMS (ESI-TOF): calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 497.2047, found 497.2037.
tert-Butyl ((1-Benzyl-7-fluoro-3-hydroxy-2-oxoindolin-3-yl)(phenyl)methyl)carbamate (6k). Light yellow oil; 17.1 mg , yield $37 \% ; 88: 12 \mathrm{dr}, 90 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=+1.1$ (c 1.00, CHCl_{3}). The ee was determined by HPLC (Chiralpak IA3, i-PrOH/hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=16.2 \mathrm{~min}$, $\left.t_{\text {major }}=17.9 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $1.44(\mathrm{~s}, 9 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.99-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.14(\mathrm{~m}$, $2 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 28.5, 45.4, 60.7, 77.0, 80.7, $118.4(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{C})$, 120.6, 124.2, 126.8, 127.2, 127.5, 127.6, 128.0, 128.1, 128.2, 128.6, 128.9, 130.9 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{C})$, 135.5, 136.0, 147.3 (d, $J=244.2 \mathrm{~Hz}, 1 \mathrm{C}$), 156.1, 176.5. HRMS (ESI-TOF): calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 485.1847$, found 485.1855 .

Procedure for the Synthesis of Compound 8. To the solution of $3 \mathbf{u}(159.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was slowly added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was subsequently stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and concentrated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. Then the mixture was adjusted to pH 10 with saturated aqueous solution of NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude primary amine $7(131.0 \mathrm{mg})$. Then the mixture of $7(131.0 \mathrm{mg})$, di(1 H -imidazol-1$\mathrm{yl})$ methanethione ($57.0 \mathrm{mg}, 32.0 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(7 \mu \mathrm{~L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6.0 \mathrm{~mL})$ was refluxed for 2 h . The mixture was adjusted to pH 2 with 2 M HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the mixture was concentrated, and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1-2 / 1$) to give the product 8 as a white solid $(130.0 \mathrm{mg})$.
(3'S,5S)-Ethyl 1'-Benzyl-5-(3-bromophenyl)-2'-oxo-2-thioxospiro-[imidazolidine-4,3'-indoline]-3-carboxylate (8). Yield 90\%; 96:4 dr, 95% ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-68.4\left(c 1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}: 138.9-140.2^{\circ} \mathrm{C}$. The ee was determined by HPLC (Chiralpak IA3, $i-\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=74.3$ $\left.\min , t_{\text {major }}=46.4 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.89-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.13$ $(\mathrm{m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.20(\mathrm{~m}$, $7 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) 13.6, 44.2, 63.5, 66.7, 73.5, 109.7, 122.7, 123.0, 123.7, 126.3, 126.9, 127.0, 127.7, 128.9, 130.4, $130.5,130.8,132.8,134.3,135.0,143.4$ 150.5, 171.2, 181.7. HRMS
(ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 558.0457$, found 558.0462.

Procedure for the Synthesis of Compound 10. To the solution of 6 ($48.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ $(0.3 \mathrm{~mL})$. The resulting mixture was subsequently stirred at room temperature for 4 h and concentrated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. Then the mixture was adjusted to pH 10 with saturated aqueous solution of NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product $9(34.0 \mathrm{mg})$. Then the mixture of $9(34.0 \mathrm{mg})$, di(1 H -imidazol-1-yl)methanethione ($28.0 \mathrm{mg}, 0.16 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(4 \mu \mathrm{~L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was refluxed for 1.5 h . The mixture was adjusted to pH 2 with 2 M HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. After being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the mixture was concentrated, and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate $=5 / 1-1 / 1)$ to give the product 10 as a yellow oil (33.0 mg).

1-Methyl-4'-phenyl-2'-thioxospiro[indoline-3,5'-oxazolidin]-2one (10). Yield 82%; $>99: 1 \mathrm{dr}, 82 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{25}=-22.3$ (c 1.00, CHCl_{3}). The ee was determined by HPLC (Chiralpak AD-H, i $\mathrm{PrOH} /$ hexane $=10 / 90$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major diastereomer: $t_{\text {minor }}=32.3 \mathrm{~min}, t_{\text {major }}=26.1 \mathrm{~min}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (major diastereomer) $2.80(\mathrm{~s}, 3 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 6.73$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major diastereomer) 26.1, 68.3, 89.3, 108.9, 123.5, 123.8, 125.3, 126.5, 126.7, 128.8, 129.0, 129.5, 131.2, 132.2, 144.7, 169.7, 189.7. HRMS (ESI-TOF): calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$333.0668, found 333.0682.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc. 6 b 00278.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HPLC spectra for the new products (PDF)
Single-crystal X-ray crystallography data for product $3 n$ (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: cuibd@zmc.edu.cn.
*E-mail: yzchen@zmc.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the financial support from New Century Excellent Talents in University of Ministry of Education of China (NCET-2013-1069) and The Science and Technology Department of Guizhou Province (QKHSY[2015]3030 and QKHRC[2016]4029).

REFERENCES

(1) Bao, X.; Wang, B.; Cui, L.; Zhu, G.; He, Y.; Qu, J.; Song, Y. Org. Lett. 2015, 17, 5168.
(2) For selected examples, see: (a) Ochi, M.; Kawasaki, K.; Kataoka, H.; Uchio, Y.; Nishi, H. Biochem. Biophys. Res. Commun. 2001, 283, 1118. (b) Bernard, K.; Bogliolo, S.; Ehrenfeld, J. Br. J. Pharmacol. 2005, 144, 1037. (c) Rottmann, M.; McNamara, C.; Yeung, B. S. K.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G.; Lakshminarayana, L.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H.-P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175.
(3) For selected examples, see: (a) Vintonyak, V. V.; Warburg, K.; Kruse, H.; Grimme, S.; Hubel, K.; Rauh, D.; Waldmann, H. Angew. Chem., Int. Ed. 2010, 49, 5902. (b) Koguchi, Y.; Kohno, J.; Nishio, M.; Takahashi, K.; Okuda, T.; Ohnuki, T.; Komatsubara, S. J. Antibiot. 2000, 53, 105. (c) Lin, S.; Yang, Z.-Q.; Kwok, B. H. B.; Koldobskiy, K. M.; Crews, C. M.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6347. (d) Balk-Bindseil, W.; Helmke, E.; Weyland, H.; Laatsch, H. Liebigs Ann. 1995, 1995, 1291. (e) Nagamine, J.; Nagata, R.; Seki, H.; Nomura-Akimaru, N.; Ueki, Y.; Kumagai, K.; Taiji, M.; Noguchi, H. J. Endocrinol. 2001, 171, 481.
(4) For reviews, see: (a) Chauhan, P.; Chimni, S.-S. Tetrahedron: Asymmetry 2013, 24, 343. (b) Han, W.-Y.; Zhao, J.-Q.; Zuo, J.; Xu, X.Y.; Zhang, X.-M.; Yuan, W.-C. Adv. Synth. Catal. 2015, 357, 3007. (c) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
(d) Chen, D.; Xu, M.-H. Chem. Commun. 2013, 49, 1327.
(5) For selected examples, see: (a) Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Org. Lett. 2009, 11, 3874. (b) Mouri, S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1255. (c) Bui, T.; Hernández-Torres, G.; Milite, C.; Barbas, C. F., III. Org. Lett. 2010, 12, 5696.
(6) For selected examples, see: (a) Shen, K.; Liu, X.; Wang, G.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2011, 50, 4684. (b) Companyó, X.; Valero, G.; Pineda, O.; Calvet, T.; Font-Bardía, M.; Moyano, A.; Rios, R. Org. Biomol. Chem. 2012, 10, 431. (c) Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.; Kündig, E. P. Chem. Commun. 2008, 4040. (d) Shirai, T.; Ito, H.; Yamamoto, Y. Angew. Chem., Int. Ed. 2014, 53, 2658.
(7) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
(8) (a) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488. (b) Sano, D.; Nagata, K.; Itoh, T. Org. Lett. 2008, 10, 1593. (c) Zhang, Z.; Zheng, W.; Antilla, J. C. Angew. Chem., Int. Ed. 2011, 50, 1135.
(9) (a) Cui, B.-D.; Han, W.-Y.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2013, 78, 8833. (b) Jiang, D.; Dong, S.; Tang, W.; Lu, T.; Du, D. J. Org. Chem. 2015, 80, 11593. (c) Chen, L.; Wu, Z.-J.; Zhang, M.-L.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. J. Org. Chem. 2015, 80, 12668. (d) Zhu, G.; Wang, B.; Bao, X.; Zhang, H.; Wei, Q.; Qu, J. Chem. Commun. 2015, 51, 15510.
(10) For selected examples, see: (a) Wang, Q.-L.; Peng, L.; Wang, F.Y.; Zhang, M.-L.; Jia, L.-N.; Tian, F.; Xu, X.-Y.; Wang, L.-X. Chem. Commun. 2013, 49, 9422. (b) Silvi, M.; Chatterjee, I.; Liu, Y.; Melchiorre, P. Angew. Chem., Int. Ed. 2013, 52, 10780. (c) Retini, M.; Bergonzini, G.; Melchiorre, P. Chem. Commun. 2012, 48, 3336. (d) Trost, B. M.; Hirano, K. Org. Lett. 2012, 14, 2446. (e) Yamaguchi, E.; Mowat, J.; Luong, T.; Krische, M. J. Angew. Chem., Int. Ed. 2013, 52, 8428.
(11) For selected examples, see: (a) Johnson, K. M.; Rattley, M. S.; Sladojevich, F.; Barber, D. M.; Nuñez, M. G.; Goldys, A. M.; Dixon, D. J. Org. Lett. 2012, 14, 2492. (b) Wang, B.; Liu, Y.; Sun, C.; Wei, Z.; Cao, J.; Liang, D.; Lin, Y.; Duan, H. Org. Lett. 2014, 16, 6432. (c) DiRocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 5904. (d) Chuan, Y.-M.; Chen, G.-H.; Gao, J.-Z.; Zhang, H.; Peng, Y.-G. Chem. Commun. 2011, 47, 3260. (e) Wang, H.-Y.; Zhang, K.; Zheng, C.-W.; Chai, Z.; Cao, D.-D.; Zhang, J.-X.; Zhao, G. Angew. Chem., Int. Ed. 2015, 54, 1775.

[^0]: Received: February 6, 2016
 Published: June 3, 2016

